

#### KNOWLEDGE SUMMARY

Keywords: BONE PATHOLOGY; CANINE; ORTHOPAEDIC DISEASE; OSTEOSARCOMA; TIBIAL PLATEUA LEVELLING OSTEOTOMY

# Osteosarcoma incidence in dogs following a tibial plateau levelling osteotomy

Laura Sweeting, BVB/DVM1\* Kenneth Johnson, BVSc MVSc PhD FACVSc DACVS DipECVS<sup>1</sup>

Submitted: 02 June 2024; published: 23 October 2025

# PICO question

In dogs, does undergoing a tibial plateau levelling osteotomy (TPLO) compared to not undergoing a TPLO affect the future risk of developing osteosarcoma?

# Clinical bottom line

Category of research

Risk.

Number and type of study designs reviewed

One experimental study, designed as a matched case control.

Strength of evidence

Weak.

Outcomes reported

Only one study is appropriately designed to investigate a TPLO and associated osteosarcoma risk. This study found a 40-fold increased risk in dogs with a history of TPLO, compared to dogs that had not undergone a TPLO (OR, 40.65; 95% CI, 4.04 to

409.06; P = 0.002).

Conclusion

There is weak yet preliminary indication to suggest a TPLO increases a dog's risk of developing osteosarcoma later in life. However, with such a wide confidence interval, the true effect remains unclear. Additional matched case-control studies are needed to strengthen knowledge of this correlation, however until this time osteosarcoma should be considered as a differential diagnosis in post-TPLO dogs which present with lameness and/or proximal limb swelling.

# How to apply this evidence in practice

The application of evidence into practice should take into account multiple factors, not limited to: individual clinical expertise, patient's circumstances and owners' values, country, location or clinic where you work, the individual case in front of you, the availability of therapies and resources.

Knowledge Summaries are a resource to help reinforce or inform decision-making. They do not override the responsibility or judgement of the practitioner to do what is best for the animal in their care.

### The evidence

Selmic et al. (2018) was the only paper appropriately designed to investigate a possible tibial plateau levelling osteotomy (TPLO) and associated osteosarcoma risk. Although this one study does support an increased risk, evidence is weak due to the limited study numbers. Further matched case-controlled investigation is needed to appropriately assess a possible TPLO-osteosarcoma correlation.

This Open Access work is distributed under a Creative Commons Attributions 4.0 International License. You are free to share (copy and redistribute the material in any medium or format) or adapt (remix, transform, and build upon the material for any purpose, even commercially), provided you fully cite this original work.

Veterinary Evidence is an online, open access, peerreviewed journal owned and published by RCVS Knowledge.

<sup>&</sup>lt;sup>1</sup> School of Veterinary Science, University of Sydney, Sydney, Australia

 $<sup>^{</sup>st}$  Corresponding author email:  $\underline{sweetinglaura@gmail.com}$ 

# Summary of the evidence

# Selmic et al. (2018)

Osteosarcoma following tibial plateau leveling osteotomy in dogs: 29 cases (1997–2011)

**Aim:** To determine if dogs that have undergone a tibial plateau leveling osteotomy (TPLO) are at an increased risk of developing proximal tibial osteosarcoma.

Population Dogs evaluated at the Colorado State University Veterinary

Teaching Hospital (USA) between 1 January 2005 and 31

December 2012.

Sample size 113 dogs.

Intervention details • Case dogs (n = 34): client owned dogs with histologically confirmed proximal tibial osteosarcoma, diagnosed  $\geq$  1 year

following a TPLO procedure (11 with prior TPLO).

Control dogs (n = 79): client owned dogs that did not have a

history of osteosarcoma (6 with prior TPLO).

• Matched to cases 3:1 (when possible) by breed, age ( $\leq$  2 years

age difference) and initial exam (≤ 1 year a part).

Study design Matched case control.

Outcome studied Comparison of osteosarcoma incidence between cases and controls, controlling for breed, age and initial exam.

Main findings

• Dogs with a history of a TPLO were 40 times more likely to develop proximal tibial osteosarcoma than a dog who had not

develop proximal tibial osteosarcoma than a dog who had not undergone a TPLO (OR 40.65; 95% CI 4.04–409.06; P = 0.002).
Every increase in 1 kg of body weight was significantly

associated with an 11% increase in proximal tibial osteosarcoma development (OR 1.11; 95% CI 1.03–1.20; P = 0.005).

Limitations

question)

- Only one veterinary hospital database was used to collect subjects, which is perhaps not a reflection of the wider dog population.
- There was a lack of statistical power analysis and justification for the selection of an 8-year data collection period.
- The study did not control for implanted TPLO plate material type.
- Although unlikely, dogs in the control group may have had undiagnosed osteosarcoma (misclassification bias).

# Appraisal, application and reflection

Selmic et al. (2018) required histologic confirmation of osteosarcoma for inclusion which is accepted as an accurate diagnostic technique (Sabattini et al., 2017). It also required an osteosarcoma diagnosis of more than or equal to one year after a tibial plateau levelling osteotomy (TPLO), avoiding the possibility of pre-existing sarcomas though not eliminating the possibility that dogs were misclassified as a control. Despite this possibility for misclassification bias and its distorting effect on risk analysis, the likelihood of misdiagnosis is low. Canine studies show increased appendicular osteosarcoma incidence at weight-bearing regions of long bones, often presenting with lameness and swelling and possibly pain and pathological fractures (Szewczyk et al., 2014; Boerman et al., 2012). The aggressive nature of osteosarcoma

and its conspicuous clinical signs support an accurate and timely diagnosis, allowing for reliable classification of subjects as either affected or osteosarcoma-free.

The value of Selmic et al. (2018) to this investigation is largely dictated by its matched case control study design. There are two alternate existing studies claiming to investigate an osteosarcoma and TPLO correlation, however, they are inappropriately designed to do so. These include the Sartor et al. (2014) investigation, as it lacks an essential non-TPLO exposure group to be a useful cohort study. Selmic et al. (2014) is also unsuitable because as a retrospective case series, it inherently lacks a control group (non-TPLO canines) amongst other useful features such as strong rigor and patient follow up (Sayre et al., 2017). As this Knowledge Summary intends to investigate variances in osteosarcoma incidence between dogs which have had a TPLO to those that have not, a non-TPLO control group is essential to effectively answer the PICO question. This is particularly important given that, although uncommon, spontaneous osteosarcoma has been reported at the proximal tibia (Morello et al., 2011). Although these studies (Sartor et al., 2014; Selmic et al., 2014) claim to examine a correlation between TPLO and osteosarcoma, their designs are inadequate and so highlight the need for further research to provide stronger evidence for veterinary clinicians.

Selmic et al. (2018) was insightful and valuable. As a matched case-control study, limitations of case series are removed although confounders can be introduced that did not previously exist in the data (Pearce, 2016; Rose & Van der Laan, 2009). As a result, as Rose & Van der Laan (2009) highlight, potential confounders must be accounted for in statistical analysis to maintain validity and increase precision. This was effectively performed by Selmic et al. (2018) through a multivariable conditional logistic regression model. Dog weight is a potential confounder, as studies report that large breeds are at increased risk of cranial cruciate ligament rupture (Powers et al., 2005; Whitehair et al., 1993), as well as osteosarcoma development (Wilk & Zabielska-Koczywas, 2021; Simpson et al., 2017; Szewczyk et al., 2014). Matching and statistical adjustment for weight ensures the findings reflect an investigation of a true TPLO-osteosarcoma association. Most notably, after adjusting for weight, the study found a significant 40-fold increased risk of developing proximal tibial osteosarcoma in TPLO dogs, compared to non-TPLO dogs (OR 40.65; 95% CI 4.04 to 409.06; P = 0.002). This is a highly important finding, however the extremely wide confidence interval must be noted. It highlights an uncertainty over the true effect size of a TPLO on osteosarcoma risk. Additionally, this 40-fold increase is reported as a relative risk, with no absolute risk provided. Absolute risk is necessary to better assess the true clinical significance of the TPLO procedure on osteosarcoma development. These considerations call for additional worthwhile study to be conducted to substantiate results and inform evidence-based practice. Corroboration of or building on findings in Selmic et al. (2018) could guide the implementation of follow-up screening programs for TPLO patients to promote early osteosarcoma detection, or prompt further investigation into specific TPLO characteristics such as plate material or post-operative infection.

Exploring possibilities for further study, Akobeng (2005) demonstrates that according to the hierarchy of evidence, randomised controlled trials are the best practice for an investigation of causal relationships, though this study type could prove contextually complex. Tibial plateau levelling osteotomy intervention in dogs would be compared to an alternative, ideally no surgical intervention, posing possible ethical and logistic concerns for owners. The TPLO could be compared to another accepted surgical intervention such as tibial tuberosity advancement (Trisciuzzi et al., 2019), though without solid understanding of the mechanism by which TPLOs could be increasing osteosarcoma risk, utilising two different surgical procedures as interventions could confound results. Large scale canine patient participation and informed client consent also pose practical and ethical obstructions to a randomised controlled trial (Nardini, 2014). Observational studies could strike a balance between feasibility and rigour. An emphasis could be placed on conducting matched case-controls, suited to the investigation of a single disease outcome (Gilmartin-Thomas et al., 2018). The use of statistical power analysis is a potential improvement to the matched case-control study design in Selmic et al. (2018), as well as the inclusion of only deceased patients with documented past medical histories to avoid undiagnosed osteosarcoma. A retrospective cohort study design provides another observational design option, allowing investigation of a possible TPLO-osteosarcoma causal effect by using past medical

patient records, and requiring similar statistical adjustment for confounders (Setia, 2016). A TPLO and non-TPLO exposure group must be included, improving upon the cohort study design intended by Sartor et al. (2014).

An obvious limitation of this Knowledge Summary to prompt evidence-based research, arises from the fact only one paper was found to appropriately investigate the PICO question. However, there remains preliminary evidence to suggest that a higher osteosarcoma incidence is seen in dogs which have undergone a TPLO in comparison to dogs which have not. Knowledge of such a correlation between TPLO and subsequent osteosarcoma is imperative due to its aggressive nature and poor prognosis. Should a definitive correlation be established, it could also guide further study into potential carcinogenic components of the TPLO procedure. Slocum cast plates have been implicated in several case reports of osteosarcoma following a TPLO, with their high ferrite composition being a speculated carcinogen (Harasen & Simko, 2008; Boudrieau et al., 2005). However, TPLO wrought plates have also been associated with osteosarcoma cases and so alternative hypotheses are postulated, including the plate's protraction of chronic inflammation (Atherton & Arthurs, 2012).

Tibial plateau levelling osteotomies are veterinarians' treatment of choice for CrCL ruptures (Von Pfeil et al., 2018) and with dog ownership increasing around the world (Larkin, 2024; Animal Medicines Australia, 2021) and CrCL ruptures a common canine orthopaedic presentation (Spinella et al., 2021; Coletti et al., 2014), TPLO surgeries will continue to be an imperative treatment in orthopaedic veterinary medicine. Thus, the industry has a responsibility to develop understanding of potential risks that accompany a veterinarian's TPLO recommendation.

#### Methodology

| Search strategy                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Databases searched and dates covered | CAB Abstracts via Web of Science 1973 – 2024<br>PubMed via NCBI 1966 – 2024<br>Scopus via Elsevier 1966 – 2024                                                                                                                                                                                                                                                                                                                      |
| Search strategy                      | CAB Abstracts:                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | (dog OR dogs OR canine OR canines OR canis) AND (tplo OR "tibial plateau levelling osteotomy") AND (osteosarcoma OR "osteogenic sarcoma" OR sarcoma OR neoplasia OR neoplasm OR neoplastic)                                                                                                                                                                                                                                         |
|                                      | PubMed:                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | ((dog[Title/Abstract] OR dogs[Title/Abstract] OR canine[Title/Abstract] OR canines[Title/Abstract] OR Canis[Title/Abstract] OR (TPLO[Title/Abstract] OR "tibial plateau levelling osteotomy"[Title/Abstract] OR tibial plateau levelling osteotomy[Title/Abstract]) AND (osteosarcoma[Title/Abstract] OR "osteogenic sarcoma"[Title/Abstract] OR sarcoma[Title/Abstract] OR neoplasia[Title/Abstract] OR neoplasia[Title/Abstract]) |
|                                      | Scopus:                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | TITLE-ABS-KEY ((dog OR dogs OR canine OR canines OR canis) AND (tplo OR "tibial plateau levelling osteotomy") AND (osteosarcoma OR "osteogenic sarcoma" OR sarcoma OR neoplasia OR neoplasm OR neoplastic))                                                                                                                                                                                                                         |
| Dates searches performed             | 08 November 2024                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Exclusion / Inclusion criteria |                                                                                                                                      |  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Exclusion                      | A single case study, not peer-reviewed, not relevant to the PICO question, a duplicate from a previously searched database.          |  |  |  |
| Inclusion                      | Any primary study written in English pertaining to osteosarcoma incidence comparison in dogs who have and have not undergone a TPLO. |  |  |  |

| Search outcome     |                   |                               |                              |                                     |                       |  |  |
|--------------------|-------------------|-------------------------------|------------------------------|-------------------------------------|-----------------------|--|--|
| Database           | Number of results | Excluded — single case report | Excluded — not peer reviewed | Excluded — not relevant to the PICO | Total relevant papers |  |  |
| CAB Abstracts      | 13                | 6                             | 2                            | 4                                   | 1                     |  |  |
| PubMed             | 10                | 5                             | 0                            | 4                                   | 1                     |  |  |
| Scopus             | 16                | 7                             | 6                            | 1                                   | 1                     |  |  |
| Total relevant paj | 1                 |                               |                              |                                     |                       |  |  |

# Acknowledgements

This manuscript was completed in partial fulfilment of requirements of the Bachelor of Veterinary Biology / Doctor of Veterinary Medicine, The University of Sydney.

#### **ORCID**

Laura Sweeting: <a href="https://orcid.org/0009-0003-5277-6003">https://orcid.org/0009-0003-5277-6003</a>
Kenneth Johnson: <a href="https://orcid.org/0000-0001-6207-3924">https://orcid.org/0000-0001-6207-3924</a>

## Conflict of interest

The author declares no conflicts of interest.

#### References

- 1. Akobeng, A.K. (2005). Understanding randomised controlled trials. *Archives of Disease in Childhood*. 90(8), 840–844. DOI: <a href="https://doi.org/10.1136/adc.2004.058222">https://doi.org/10.1136/adc.2004.058222</a>
- 2. Animal Medicines Australia (2021). Pets and the Pandemic: A social research snapshot of pets and people in the COVID-19 era, [online]. Available at: <a href="https://animalmedicinesaustralia.org.au/wp-content/uploads/2021/08/AMAU005-PATP-Report21\_v1.4\_WEB.pdf">https://animalmedicinesaustralia.org.au/wp-content/uploads/2021/08/AMAU005-PATP-Report21\_v1.4\_WEB.pdf</a> [Accessed 14 September 2022].
- 3. Atherton, M.J. & Arthurs, G. (2012). Osteosarcoma of the Tibia 6 years After Tibial Plateau Leveling Osteotomy. *Journal of the American Animal Hospital Association*. 48(3), 188–193. DOI: https://doi.org/10.5326/JAAHA-MS-5730
- 4. Boerman, I., Selvarajah, G.T., Nielen, M. & Kirpensteijn, J. (2012). Prognostic factors in canine appendicular osteosarcoma a meta-analysis. *BMC Veterinary Research*. 8, 56. DOI: <a href="https://doi.org/10.1186/1746-6148-8-56">https://doi.org/10.1186/1746-6148-8-56</a>
- 5. Boudrieau, R.J., McCarthy, R.J. & Sisson, R.D. Jr. (2005). Sarcoma of the proximal portion of the tibia in a dog 5.5 years after tibial plateau leveling osteotomy. *Journal of the American Veterinary Medical Association*. 227(10), 1613–1591. DOI: <a href="https://doi.org/10.2460/javma.2005.227.1613">https://doi.org/10.2460/javma.2005.227.1613</a>
- 6. Coletti, T.J., Anderson, M., Gorse, M.J. & Madsen, R. (2014). Complications associated with tibial plateau leveling osteotomy: a retrospective of 1519 procedures. *The Canadian Veterinary Journal*. 55(3), 249–254.
- 7. Gilmartin-Thomas, J.F.M., Liew, D. & Hopper, I. (2018). Observational studies and their utility for practice. *Australian Prescriber*. 41(3), 82–85. DOI: <a href="https://doi.org/10.18773/austprescr.2018.017">https://doi.org/10.18773/austprescr.2018.017</a>
- 8. Harasen, G.L.G. & Simko, E. (2008). Histiocytic sarcoma of the stifle in a dog with cranial cruciate ligament failure and TPLO treatment. *Veterinary and Comparative Orthopaedics and Traumatology*. 21(4), 375–377. DOI: <a href="https://doi.org/10.3415/vcot-07-05-0054">https://doi.org/10.3415/vcot-07-05-0054</a>
- 9. Larkin, M. (2024). Pet population continues to increase while pet spending declines. *AMVA News*, [online]. Available at: <a href="https://www.avma.org/news/pet-population-continues-increase-while-pet-spending-declines">https://www.avma.org/news/pet-population-continues-increase-while-pet-spending-declines</a> [Accessed 12 September 2022].

- 10. Morello, E., Martano, M. & Buracco, P. (2011) Biology, diagnosis and treatment of canine appendicularosteosarcoma: Similarities and differences with human osteosarcoma. *The Veterinary Journal*. 189(3), 268 –277. DOI: https://doi.org/10.1016/j.tvjl.2010.08.014
- 11. Nardini, C. (2014). The ethics of clinical trials. *ecancermedicalscience*. 8, 387. DOI: <a href="https://doi.org/10.3332/ecancer.2014.387">https://doi.org/10.3332/ecancer.2014.387</a>
- 12. Pearce, N. (2016). Analysis of matched case-control studies. *British Medical Journal*. 352, i969. DOI: https://doi.org/10.1136/bmj.i969
- 13. Powers, M.Y, Martinez, S.A., Lincoln, J.D, Temple, C.J. & Arnaiz, A. (2005). Prevalence of cranial cruciate ligament rupture in a population of dogs with lameness previously attributed to hip dysplasia: 369 cases (1994-2003). *Journal of the American Veterinary Medical Association*. 227(7), 1109–1111. DOI: https://doi.org/10.2460/javma.2005.227.1109
- 14. Rose, S. & Van der Laan, M.J. (2009). Why Match? Investigating Matched Case-Control Study Designs with Causal Effect Estimation. *The International Journal of Biostatistics*. 5(1), 1. DOI: <a href="https://doi.org/10.2202/1557-4679.1127">https://doi.org/10.2202/1557-4679.1127</a>
- 15. Sabattini, S., Renzi, A., Buracco, P., Defourny, S., Garnier-Moiroux, M., Capitani, O. & Bettini, G. (2017). Comparative Assessment of the Accuracy of Cytological and Histologic Biopsies in the Diagnosis of Canine Bone Lesions. *Journal of Veterinary Internal Medicine*. 31(3), 864–871. DOI: <a href="https://doi.org/10.1111/jvim.14696">https://doi.org/10.1111/jvim.14696</a>
- 16. Sartor, A.J., Ryan, S.D., Sellmeyer, T., Withrow, S.J. & Selmic L.E. (2014). Bi-institutional retrospective cohort study evaluating the incidence of osteosarcoma following tibial plateau levelling osteotomy (2000-2009). *Veterinary and Comparative Orthopaedics and Traumatology*. 27(5), 339–345. DOI: <a href="https://doi.org/10.3415/VCOT-14-01-0006">https://doi.org/10.3415/VCOT-14-01-0006</a>
- 17. Sayre, J.W., Toklu, H.Z., Ye, F., Mazza, J. & Yale, S. (2017). Case Reports, Case Series From Clinical Practice to Evidence-Based Medicine in Graduate Medical Education. *Cureus Journal of Medical Science*. 9(8), e1546. DOI: <a href="https://doi.org/10.7759/cureus.1546">https://doi.org/10.7759/cureus.1546</a>
- 18. Selmic, L.E., Ryan, S.D., Boston, S.E., Liptak, J.M., Culp, W.T.N., Sartor, A.J., Prpich, C.Y. & Withrow, S.J. (2014). Osteosarcoma following tibial plateau leveling osteotomy in dogs: 29 cases (1997–2011). *Journal of the American Veterinary Medical Association*. 244(9), 1053–1059. DOI: https://doi.org/10.2460/javma.244.9.1053
- 19. Selmic, L.E., Ryan, S.D., Ruple, A., Pass, W.E. & Withrow, S.J. (2018). Association of tibial plateau leveling osteotomy with proximal tibial osteosarcoma in dogs. *Journal of the American Veterinary Medical Association*. 253(6), 752–756. DOI: <a href="https://doi.org/10.2460/javma.253.6.752">https://doi.org/10.2460/javma.253.6.752</a>
- 20. Setia, M.S. (2016). Methodology Series Module 1: Cohort Studies. *Indian Journal of Dermatology*. 61(1), 21-25. DOI:  $\underline{\text{https://doi.org/10.4103/0019-5154.174011}}$
- 21. Simpson, S., Dunning, M.D., De Brot, S., Grau-Roma, L., Mongan, N.P. & Rutland, C.S. (2017). Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics. *Acta Veterinaria Scandinavica*. 59, 71. DOI: <a href="https://doi.org/10.1186/s13028-017-0341-9">https://doi.org/10.1186/s13028-017-0341-9</a>
- 22. Spinella, G., Arcamone, G. & Valentini, S. (2021). Cranial Cruciate Ligament Rupture in Dogs: Review on Biomechanics, Etiopathogenetic Factors and Rehabilitation. *Veterinary Sciences*. 8(9), 186. DOI: <a href="https://doi.org/10.3390/vetsci8090186">https://doi.org/10.3390/vetsci8090186</a>
- 23. Szewczyk, M., Lechowski, R. & Zabielska, K. (2014). What do we know about canine osteosarcoma treatment? review. *Veterinary Research Communications*. 39, 61–67. DOI: <a href="https://doi.org/10.1007/s11259-014-9623-0">https://doi.org/10.1007/s11259-014-9623-0</a>
- 24. Trisciuzzi, R., Fracassi, L., Martin, H.A., Monopoli Forleo, D., Amat, D., Santos-Ruiz, L., De Palma, E. & Crovace, A.M. (2019). 41 Cases of Treatment of Cranial Cruciate Ligament Rupture with Porous TTA: Three Years of Follow Up. *Veterinary Sciences*. 6, 18. DOI: <a href="https://doi.org/10.3390/vetsci6010018">https://doi.org/10.3390/vetsci6010018</a>
- 25. Von Pfeil, D.J.F., Kowaleski, M.P., Glassman, M. & Dejardin, L.M. (2018). Results of a survey of Veterinary Orthopedic Society members on the preferred method for treating cranial cruciate ligament rupture in dogs weighing more than 15 kilograms (33 pounds). *Journal of the American Veterinary Medical Association*. 253(5), 586–597. DOI: <a href="https://doi.org/10.2460/javma.253.5.586">https://doi.org/10.2460/javma.253.5.586</a>
- Whitehair, J.G., Vasseur, P.B. & Willits, N.H. (1993). Epidemiology of cranial cruciate ligament rupture indogs. *Journal of the American Veterinary Medical Association*. 203(7), 1016–1019. DOI: <a href="https://doi.org/10.2460/javma.1993.203.07.1016">https://doi.org/10.2460/javma.1993.203.07.1016</a>

27. Wilk, S.S. & Zabielska-Koczywąs, K.A. (2021). Molecular mechanisms of canine osteosarcoma metastasis. *International Journal of Molecular Sciences*. 22(7):3639. DOI: <a href="https://doi.org/10.3390/ijms22073639">https://doi.org/10.3390/ijms22073639</a>

#### Contribute to the evidence

There are two main ways you can contribute to the evidence base while also enhancing your CPD:

- Tell us your information need
- Write a Knowledge Summary

Either way, you will be helping to add to the evidence base, and strengthen the decisions that veterinary professionals around the world make to give animals the best possible care. Learn more here: <a href="https://veterinaryevidence.org/index.php/ve/author-hub">https://veterinaryevidence.org/index.php/ve/author-hub</a>

#### Licence

Copyright (c) 2025 Laura Sweeting, Kenneth Johnson

# Intellectual property rights

Authors of Knowledge Summaries submitted to RCVS Knowledge for publication will retain copyright in their work, and will be required to grant to RCVS Knowledge a non-exclusive licence to publish including but not limited to the right to publish, re-publish, transmit, sell, distribute and otherwise use the materials in all languages and all media throughout the world, and to licence or permit others to do so.

#### Disclaimer

Knowledge Summaries are a peer-reviewed article type which aims to answer a clinical question based on the best available current evidence. It does not override the responsibility of the practitioner. Informed decisions should be made by considering such factors as individual clinical expertise and judgement along with patient's circumstances and owners' values. Knowledge Summaries are a resource to help inform and any opinions expressed within the Knowledge Summaries are the author's own and do not necessarily reflect the view of the RCVS Knowledge. Authors are responsible for the accuracy of the content. While the Editor and Publisher believe that all content herein are in accord with current recommendations and practice at the time of publication, they accept no legal responsibility for any errors or omissions, and make no warranty, express or implied, with respect to material contained within. For further information please refer to our Terms of Use.